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1. Introduction

Rough set theory, proposed by Pawlak in the early 1980s [15], is
an extension of the classical set theory for modeling uncertainty or
imprecision information. The research has recently roused great
interest in the theoretical and application fronts, such as machine
learning, pattern recognition, data analysis, and so on.

In Pawlak’s original rough set theory, partition or equivalence
(indiscernibility relation) is an important and primitive concept.
However, partition or equivalence relation, as the indiscernibility
relation in Pawlak’s original rough set theory, is still restrictive for
many applications. To address this issue, several interesting and
meaningful extensions to equivalence relation have been proposed
in the past, such as tolerance relations [22], neighborhood
operators [31], others [11,24,26–28,32]. Particularly, in many real
situations, we are often face to the problems in which the ordering
of properties of the considered attributes plays a crucial role. One
such type of problem is the ordering of objects. For this reason,
Greco, Matarazzo, and Slowinski proposed an extension rough set
theory, called the dominance-based rough set approach (DRSA) to
take into account the ordering properties of criteria [4–9]. This
innovation is mainly based on substitution of the indiscernibility

relation by a dominance relation. Moreover, Greco, Matarazzo, and
Slowinski characterize the DRSA as well as decision rules induced
from rough approximations, while the usefulness of the DRSA and
its advantages over the CRSA (classical rough set approach) are
presented [4–9]. In DRSA, condition attributes are criteria and
classes are preference ordered. Several studies have been made
about properties and algorithmic implementations of DRSA
[2,3,23,29].

To evaluate uncertainty of a system, another important concept
of entropy was introduced by Shannon in ref. [21]. It is a very useful
mechanism for characterizing information contents in various
modes and has been applied in diverse fields. The entropy and its
variants were adapted for rough set theory in ref. [25] and
information interpretation of rough set theory was given in refs.
[16–18]. Beaubouef et al. [1] addressed information measures of
uncertainty of rough sets and rough relation databases. In ref. [12], a
new method for evaluating both uncertainty and fuzziness was
proposed. Unlike most existing information entropies, Qian and
Liang [19] proposed a so-called combination entropy for evaluating
uncertainty of a knowledge from an information system. All these
studies were dedicated to evaluating uncertainty of a set in terms of
the partition ability of a knowledge. As a powerful mechanism,
granulation was first introduced by Zadeh in ref. [33]. It presents a
more visual and easily understandable description for a partition on
the universe. To characterize the granulation, granular computing
was introduced in ref. [34], which, as a term with many meanings,
covers all the research related to granulations. With regard to
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granular computing, many pieces of nice work were accomplished in
refs. [10,14,20,30]. Especially, closely associated with granular
computing, several measures on knowledge in an information
system were proposed and the relationships between these
measures were discussed in ref. [13]. These measures include
granulation measure, information entropy, rough entropy, and
knowledge granulation, and have become effective mechanisms for
evaluating uncertainty in rough set theory. In this paper, we
introduce concepts of knowledge granulation, knowledge entropy
and knowledge uncertainty measure in ordered information
systems, and discuss some important properties of them. From
these properties, it can be shown that these measures which are
proposed provides important approaches to measuring the dis-
cernibility ability of different knowledge in ordered information
systems.

The rest of this paper is organized as follows. Some preliminary
concepts such as ordered information systems, indiscernibility
relation, partition, lower and upper approximations, partial
relation of knowledge and decision tables are briefly recalled in
Section 2. In Sections 3–5, concepts of knowledge granulation,
knowledge entropy and knowledge uncertainty measure in
ordered information systems are introduced respectively, and
some important properties of them are discussed. In Section 6, we
investigate the relationship between knowledge granulation,
knowledge entropy and knowledge uncertainty measure. Finally,
as an application of knowledge granulation, we introduce
definition of rough entropy of rough sets in ordered information
systems in Section 7. By an example, it is shown that the rough
entropy of rough sets is more accurate than classical rough degree
to measure the roughness of rough sets in ordered information
systems.

2. Rough sets and ordered information systems

The following recalls necessary concepts and preliminaries
required in the sequel of our work. Detailed description of the
theory can be found in the source papers [4–9]. A description has
also been made in ref. [35].

The notion of information system (sometimes called data
tables, attribute-value systems, knowledge representation sys-
tems, etc.) provides a convenient tool for the representation of
objects in terms of their attribute values.

An information system is an ordered triple I ¼ ðU;A; FÞ, where
U ¼ fx1; x2; . . . ; xng is a non-empty finite set of objects called the
universe, and A ¼ fa1; a2; . . . ; a pg is a non-empty finite set of
attributes, such that there exists a map f l : U!Val

for any al 2A,
where Val

is called the domain of the attribute al, and denoted
F ¼ f f ljal 2Ag.

In an information systems, if the domain of an attribute is
ordered according to a decreasing or increasing preference, then
the attribute is a criterion.

Definition 2.1. (See refs. [4–9]) An information system is called an
ordered information system (OIS) if all condition attributes are
criteria.

Assumed that the domain of a criterion a2A is complete pre-
ordered by an outranking relation < a, then x < ay means that x is at
least as good as y with respect to criterion a. And we can say that x

dominates y. In the following, without any loss of generality, we
consider criterions having a numerical domain, that is, Va�R (R
denotes the set of real numbers).

We define x < y by f ðx; aÞ� f ðy; aÞ according to increasing
preference, where a2A and x; y2U. For a subset of attributes B�A,
x < By means that x < ay for any a2B, and that is to say x dominates

y with respect to all attributes in B. Furthermore, we denote x < By

by xR <

B y. In general, we denote a ordered information systems by
I < ¼ ðU;A; FÞ. Thus the following definition can be obtained.

Definition 2.2. (See refs. [4–9]) Let I < ¼ ðU;A; FÞ be an ordered
information, for B�A, denote

R <

B ¼ fðx; yÞ 2U � Uj f lðxÞ� f lðyÞ; 8 al 2Bg;

R <

B are called dominance relations of ordered information system
I < .

Let denote

½xi� <

B ¼ fx j 2Ujðx j; xiÞ 2R <

B g ¼ fx j 2Uj f lðx jÞ� f lðxiÞ; 8 al 2Bg;
U

R <

B

¼ f½xi� <

B jxi 2Ug;

where i2f1;2; . . . ; jUjg, then ½xi� <

B will be called a dominance class
or the granularity of information, and U=R <

B be called a
classification of U about attribute set B.

The following properties of a dominance relation are trivial by
the above definition.

Proposition 2.1. (See refs. [4–9]) Let R <

A be a dominance relation.

(1) R <

A is reflexive, transitive, but not symmetric, so it is not an
equivalence relation.

(2) If B�A, then R <

A �R <

B .
(3) If B�A, then ½xi� <

A � ½xi� <

B .
(4) If x j 2 ½xi� <

A , then ½x j� <

A � ½xi� <

A and ½xi� <

A ¼ [f½x j� <

A jx j 2 ½xi� <

A g.
(5) ½x j� <

A ¼ ½xi� <

A iff f ðxi; aÞ ¼ f ðx j; aÞ for all a2A.
(6) j½xi� <

B j �1 for any xi 2U.
(7) U=R <

B constitute a covering of U, i.e., for every x2U we have
that ½x� <

B 6¼f and
S

x2U ½x�
<

B ¼ U.

where j � j denotes cardinality of the set.
For any subset X of U and A of I < , the lower and upper

approximation of X with respect to a dominance relation R <

A could
be defined as following (see refs. [4–9]):

R <

A ðXÞ ¼ fx2Uj½x� <

A �Xg;
R <

A ðXÞ ¼ fx2Uj½x� <

A \X 6¼fg:

where ½xi�^B ¼ fx j 2Uj f lðx jÞ � f lðxiÞ; 8 al 2Bg.
From the above definition of rough approximation, the

following important properties in ordered information systems
have been proved, which are similar to those of Pawlak
approximation spaces.

Proposition 2.2. (See refs. [4–9]) Let I < ¼ ðU;A; FÞ be an ordered

information system and X�U. The rough approximation can be

expressed as union of elementary sets. That is to say the following

holds.

R <

A ðXÞ ¼
[

x2U

f½x� <

A j½x�
<

A �Xg;

R <

A ðXÞ ¼
[

x2U

f½x�^A j½x�
<

A \X 6¼fg:

Proposition 2.3. (See [4–9]) Let I < ¼ ðU;A; FÞ be an ordered infor-

mation system and X;Y �U, then its lower and upper approximations

satisfy the following properties.

R <

A ðXÞ�X�R <

A ðXÞ: (1)
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R <

A ðX [YÞ ¼ R <

A ðXÞ [R <

A ðYÞ;
R <

A ðX \YÞ ¼ R <

A ðXÞ \R <

A ðYÞ:
(2)

R <

A ðXÞ [R <

A ðYÞ�R <

A ðX [YÞ;
R <

A ðX \YÞ�R <

A ðXÞ \R <

A ðYÞ:
(3)

R <

X ð�XÞ ¼ �R <

A ðXÞ;
R <

A ð�XÞ ¼ �R <

A ðXÞ:
(4)

R <

A ðUÞ ¼ U;

R <

A ðfÞ ¼ f:
(5)

R <

A ðXÞ ¼ R <

A ðR
<

A ðXÞÞ ¼ R <

A ðR
<

A ðXÞÞ;
R <

A ðXÞ ¼ R <

A ðR
<

A ðXÞÞ ¼ R <

A ðR
<

A ðXÞÞ:
(6)

If X�Y; then R <

A ðXÞ�R <

A ðYÞ and R <

A ðXÞ�R <

A ðYÞ: (7)

where �X is the complement of X.

Definition 2.3. For an ordered information system I < ¼ ðU;A; FÞ
and B;C�A.

(1) If ½x� <

B ¼ ½x�
<

C for any x2U, then we call that classification U=R <

B

is equal to R=R <

C , denoted by U=R <

B ¼ U=R <

C .
(2) If ½x� <

B � ½x�
<

C for any x2U, then we call that classification U=R <

B

is finer than R=R <

C , denoted by U=R <

B �U=R <

C .
(3) If ½x� <

B � ½x�
<

C for any x2U and ½x� <

B 6¼ ½x�
<

C for some x2U, then
we call that classification U=R <

B is properly finer then R=R <

C ,
denoted by U=R <

B 	U=R <

C .

For an ordered information system I < ¼ ðU;A; FÞ and B�A, it is
obtained that U=R <

A �U=R <

B by Proposition 2.1(3) and above
definition. So, an ordered information system I < ¼ ðU;A; FÞ be
regarded as knowledge base U=R <

A , and R <

A be regarded as
knowledge.

Example 2.1. Given an ordered information system in Table 1.

From the table we can have

½x1� <

A ¼ fx1; x2; x5; x6g;

½x2� <

A ¼ fx2; x5; x6g;

½x3� <

A ¼ fx2; x3; x4; x5; x6g;

½x4� <

A ¼ fx4; x6g;

½x5� <

A ¼ fx5g;

½x6� <

A ¼ fx6g:

If denote B ¼ fa1; a2g, the following can be got

½x1� <

B ¼ fx1; x2; x5; x6g;

½x2� <

B ¼ fx2; x5; x6g;

½x3� <

B ¼ fx1; x2; x3; x4; x5; x6g;

½x4� <

B ¼ fx2; x4; x5; x6g;

½x5� <

B ¼ fx5g;

½x6� <

B ¼ fx5; x6g:

Thus, it is obviously that U=R <

A �U=R <

B . We can say that
classification U=R <

A is finer than classification U=R <

B , or knowledge
R <

A is finer than R <

B .

3. Knowledge granulation in ordered information systems

In this section, we will introduce a definition of granulation of
knowledge in ordered information systems, and discuss some
important properties.

Definition 3.1. Let I � ¼ ðU;A; FÞ be an ordered information sys-
tem, R� be a dominance relation, and U=R� ¼ f½u��R ju2Ug be the
classification. Granulation of knowledge R� , which is denoted by
GKðR� Þ, is defined by

GKðR� Þ ¼ 1

jUj2
XjUj
i¼1

j½xi��R j:

Theorem 3.1. (Equivalence) Let I � ¼ ðU;A; FÞ be an ordered infor-

mation system, and U=R� ¼ f½u��R ju2Ug;U=S� ¼ f½u��S ju2Ug be

classifications of two dominance relations R� and S� respectively.
If jU=R� j ¼ jU=S� j, and it exists a bijective map h : U=R� !U=S�

such that j½u��R j ¼ jhð½u�
�
R Þj, then GKðR� Þ ¼ GKðS� Þ.

Proof. It can be achieved by Definition 3.1. &

Corollary 3.1. Let I � = ðU;A; FÞ be an ordered information system,
and R� ; S� be two dominance relations. If R� ¼ S� , then

GKðR� Þ ¼ GKðS� Þ.

Theorem 3.2. (Monotonicity) Let I � ¼ ðU;A; FÞ be an ordered infor-

mation system, and U=R� ¼ f½u��R ju2Ug;U=S� ¼ f½u��S ju2Ug be

classifications of two dominance relations R� and S� respectively.
If R� ^ S� , then GKðR� Þ � GKðS� Þ.

Proof. Because R� ^ S� , it can be obtained ½u��R � ½u�
�
S for any

u2U. So, j½u��R j � j½u�
�
S j. Thus, the following holds, i.e.,

GKðR� Þ ¼ 1

jUj2
XjUj
i¼1

j½xi��R j �
1

jUj2
XjUj
i¼1

j½xi��S j ¼ GKðS� Þ:

Hence,

GKðR� Þ � GKðS� Þ:

The theorem was proved. &

Example 3.1. (Continued from Example 2.1) By computing, we
have that

Table 1
An ordered information system.

U a1 a2 a3

x1 1 2 1

x2 3 2 2

x3 1 1 2

x4 2 1 3

x5 3 3 2

x6 3 2 3

X. Wei-hua et al. / Applied Soft Computing 9 (2009) 1244–12511246
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GKðR�A Þ ¼
1

62
�ð4þ 3þ 5þ 2þ 1þ 1Þ ¼ 4

9

GKðR�B Þ ¼
1

62
�ð4þ 3þ 6þ 4þ 1þ 2Þ ¼ 5

9

Obviously, GKðR�A Þ � GKðR�B Þ
By Theorem 3.2, we can acquire the following corollary.

Corollary 3.2. Let I � = ðU;A; FÞ be an ordered information system,
and R� ; S� be two dominance relations. If R� 
 S� , then

GKðR� Þ<GKðS� Þ.

Corollary 3.3. Let I � = ðU;A; FÞ be an ordered information system,
and R� ; S� be two dominance relations. If R� ^ S� and
GKðR� Þ ¼ GKðS� Þ, then R� ¼ S� .

Theorem 3.3. (Minimum) Let I � ¼ ðU;A; FÞ be an ordered informa-

tion system, and R� be a dominance relation. The minimum of

knowledge granulation of this ordered information system is 1=jUj.
This value is achieved only if R� ¼ I� , where I� is an unit dominance

relation, i.e., U=I� ¼ f½u��I ¼ fugju2Ug.

Proof. Since U=I� ¼ f½u��I ¼ fugju2Ug, so we have

GKðI� Þ ¼ 1

jUj2
XjUj
i¼1

j½xi��R j ¼
1

jUj2
XjUj
i¼1

1 ¼ 1

jUj :

Thus,

GKðI� Þ ¼ 1

jUj :

The theorem was proved. &

Theorem 3.4. (Maximum) Let I � ¼ ðU;A; FÞ be an ordered informa-

tion system, and R� be a dominance relation. The maximum of

knowledge granulation of this ordered information system is 1. This

value is achieved only if R� ¼ d� , where d� is an universe dominance

relation, i.e., U=d� ¼ f½u��R ¼ Uju2Ug.

Proof. Since U=d� ¼ f½u��d ¼ Uju2Ug, so we have

GKðd� Þ ¼ 1

jUj2
XjUj
i¼1

j½xi��R j ¼
1

jUj2
XjUj
i¼1

jUj ¼ 1:

Thus,

GKðd� Þ ¼ 1:

The proof was completed. &

Theorem 3.5. (Boundedness) Let I � ¼ ðU;A; FÞ be an ordered infor-

mation system, and R� be a dominance relation, then knowledge

granulation GKðR� Þ exists the boundedness, i.e.,

1

jUj � GKðR� Þ � 1;

where GKðR� Þ ¼ 1=jUj if and only if R� ¼ I� , and GKðR� Þ ¼ 1 if and

only if R� ¼ d� .

Proof. It can be obtained by above theorems. &

Theorem 3.6. (Knowledge resolved) Let I � ¼ ðU;A; FÞ be an

ordered information system, and U=R� ¼ f½u��R ju2Ug be classifica-

tion of dominance relation R� . If some knowledge fragment

½u��R ðu2UÞ can be resolved into two new knowledge fragments,

and else fragments have no changes, where we denote new knowledge

by R0 � , then GKðR0 � Þ � GKðR� Þ.

Proof. Let Assume that ½xi��R of U=R� can be resolved into ½xi��R0 and
½x j��R0 (i< j), where ½xi��R ¼ ½xi��R0 [ ½x j��R0 , and ½xi��R0 � ½xi��R ; ½x j��R0
� ½x j��R . So, we have

U

R0 �
¼ f½x1��R ; ½x2��R ; � � � ; ½xi��R0 ; � � � ; ½x j��R0 ; � � � ; ½xjUj�

�
R g:

That is to say

GKðR� Þ ¼ 1

jUj2
XjUj
t¼1

j½xt��R j

¼ 1

jUj2
Xi�1

t¼1

j½xt��R j þ
1

jUj2
j½xi��R j þ

1

jUj2
Xj�1

t¼iþ1

j½xt��R j

þ 1

jUj2
j½x j��R j þ

1

jUj2
XjUj

t¼ jþ1

j½xt��R j �
1

jUj2
Xi�1

t¼1

j½xt��R j

þ 1

jUj2
j½xi��R0 j þ

1

jUj2
Xj�1

t¼iþ1

j½xt��R j þ
1

jUj2
j½x j��R0 j

þ 1

jUj2
XjUj

t¼ jþ1

j½xt��R j

¼ GKðR0 � Þ

Thus,

GKðR0 � Þ � GKðR� Þ:

The theorem was proved. &

Corollary 3.4. Let I � ¼ ðU;A; FÞ be an ordered information system,
R� be a dominance. If R� can be resolved into a new knowledge R

0 � ,
then GKðR0 � Þ � GKðR� Þ.

Theorem 3.7. (Knowledge composed) Let I � ¼ ðU;A; FÞ be an

ordered information system, and U=R� ¼ f½u��R ju2Ug be classifica-

tion of dominance relation R� . If a new knowledge fragment can be

composed of two knowledge fragments of R� , and else fragments have

no changes, where we denote new knowledge by R00 � , then

GKðR� Þ � GKðR00 � Þ.

Proof. Let Assume that ½xk��R00 can be composed of ½xi��R and ½x j��R of
U=R� (i; j< k), where ½xk��R00 ¼ ½xi��R [ ½x j��R , and ½xk��R � ½xk��R00 . So we
have

U

R00 �
¼ f½x1��R ; ½x2��R ; � � � ; ½xi��R ; � � � ; ½x j��R ; � � � ; ½xk��R00 ; � � � ; ½xjUj�

�
R g:

Thus,

GKðR� Þ ¼ 1

jUj2
XjUj
t¼1

j½xt��R j

¼ 1

jUj2
Xk�1

t¼1

j½xt��R j þ
1

jUj2
j½xk��R j þ

1

jUj2
XjUj

t¼kþ1

j½xt��R j

� 1

jUj2
Xk�1

t¼1

j½xt��R j þ
1

jUj2
j½xk��R00 j þ

1

jUj2
XjUj

t¼kþ1

j½xt��R j ¼ GKðR00 � Þ

That is to say

GKðR� Þ � GKðR00 � Þ:

The theorem was proved. &

Corollary 3.5. Let I � = ðU;A; FÞ be an ordered information system,
R� be a dominance. If a new knowledge R

00 � can be composed of R� ,
then GKðR00 � Þ � GKðR� Þ.
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From the above conclusions, it can be shown that a knowledge
granulation provides an important approach to measuring the
discernibility ability of a knowledge in ordered information
systems. The smaller the knowledge granulation is, the stronger
its discernibility ability is.

4. Knowledge entropy in ordered information systems

In this section, two definitions of knowledge rough entropy and
knowledge information entropy will be proposed in ordered
information systems, and some important properties were
investigated.

4.1. Knowledge rough entropy in ordered information systems

Definition 4.1. Let I � = ðU;A; FÞ be an ordered information system,
R� be a dominance relation, and U=R� ¼ f½u��R ju2Ug be the
classification. Rough entropy of knowledge R� , which is denoted
by ErðR� Þ, is defined by

ErðR� Þ ¼ �
XjUj
i¼1

1

jUj � log 2
1

j½xi��B j
:

Theorem 4.1. Let I � = ðU;A; FÞ be an ordered information system,
and U=R� ¼ f½u��R ju2Ug;U=S� ¼ f½u��S ju2Ug be classifications of

two dominance relations R� and S� respectively. We can have the

following conclusions.

(1) (Equivalence) If jU=R� j ¼ jU=S� j, and it exists a bijective map
h : U=R� !U=S� such that j½u��R j ¼ jhð½u�

�
R Þj, then

ErðR� Þ ¼ ErðS� Þ.
(2) (Monotonicity) If R� ^ S� , then ErðR� Þ � ErðS� Þ.
(3) (Boundedness) Information entropy of knowledge R� exists

the boundedness, i.e.,

0 � ErðR� Þ � log 2jUj;

where ErðR� Þ ¼ 0 if and only if R� ¼ I� , and ErðR� Þ ¼ log 2jUj
if and only if R� ¼ d� .

(4) (Knowledge resolved) If R� can be resolved into a new
knowledge R

0 � , then ErðR
0 � Þ � ErðR� Þ.

(5) (Knowledge composed) If a new knowledge R
00 � can be

composed of R� , then ErðR� Þ � ErðR
00 � Þ.

Proof. The proof of them are similar to Theorems 3.1–3.7. &

Example 4.1. The following example shows that converse propo-
sition of Theorem 4.1(2) does not hold.

Let denote B0 ¼ fa1g and B00 ¼ fa2g, so we have

½x1��B0 ¼ ½x3��B0 ¼ fx1; x2; x3; x4; x5; x6g;

½x2��B0 ¼ ½x5��B0 ¼ ½x6��B0 ¼ fx2; x5; x6g;

½x4��B0 ¼ fx2; x4; x5; x6g;

and

½x1��B00 ¼ ½x2��B00 ¼ ½x6��B00 ¼ fx1; x2; x5; x6g;

½x3��B00 ¼ ½x4��B00 ¼ fx1; x2; x3; x4; x5; x6g;

½x5��B00 ¼ fx5g:

By computing, we can find ErðR�B0 Þ ¼ 1:98747 and ErðR�B00 Þ ¼
2:19499. That is to say ErðR�B0 Þ< ErðR�B00 Þ. But R�

B0 ^ R�
B00 does not hold.

Example 4.2. (Continued from Example 2.1) By computing, we
have that

ErðR�A Þ ¼
1

6
�log 24þ 1

6
�log 23þ 1

6
�log 25þ 1

6
�log 22þ 1

6
�log 21

þ 1

6
�log 21 ¼ 1:15115

ErðR�B Þ ¼
1

6
�log 24þ 1

6
�log 23þ 1

6
�log 26þ 1

6
�log 24þ 1

6
�log 21

þ 1

6
�log 22 ¼ 1:52832

So, ErðR�A Þ � ErðR�B Þ.

4.2. Knowledge information entropy in ordered information systems

Definition 4.2. Let I � = ðU;A; FÞ be an ordered information system,
R� be a dominance relation, and U=R� ¼ f½u��R ju2Ug be the
classification. Information entropy of knowledge R� , which is
denoted by EðR� Þ, is defined by

EðR� Þ ¼
XjUj
i¼1

1

jUj 1� j½xi��R j
jUj

 !

Theoreom 4.8. Let I � ¼ ðU;A; FÞ be an ordered information system,
and U=R� ¼ f½u��R ju2Ug;U=S� ¼ f½u��S ju2Ug be classifications of

two dominance relations R� and S� respectively. We can have the

following conclusions.

(1) (Equivalence) If jU=R� j ¼ jU=S� j, and it exists a bijective map
h : U=R� !U=S� such that j½u��R j ¼ jhð½u�

�
R Þj, then

EðR� Þ ¼ EðS� Þ.
(2) (Monotonicity) If R� ^ S� , then EðR� Þ� EðS� Þ.
(3) (Boundedness) Information entropy of knowledge R� exists

the boundedness, i.e.,

0 � EðR� Þ � 1� 1

jUj ;

where EðR� Þ ¼ 1� 1=jUj if and only if R� ¼ I� , and EðR� Þ ¼ 0

if and only if R� ¼ d� .
(4) (Knowledge resolved) If R� can be resolved into a new

knowledge R
0 � , then EðR0 � Þ� EðR� Þ.

(5) (Knowledge composed) If a new knowledge R
00 � can be

composed of R� , then EðR� Þ� EðR00 � Þ.

Proof. The proof of them are similar to Theorems 3.1–3.7. &

Example 4.3. (Continued from Example 2.1) By computing, we
have that

EðR�A Þ ¼
1

6
1� 4

6

� �
þ 1

6
1� 3

6

� �
þ 1

6
1� 5

6

� �
þ 1

6
1� 2

6

� �

þ 1

6
1� 1

6

� �
þ 1

6
1� 1

6

� �
¼ 5

9

EðR�B Þ ¼
1

6
1� 4

6

� �
þ 1

6
1� 3

6

� �
þ 1

6
1� 6

6

� �
þ 1

6
1� 4

6

� �

þ 1

6
1� 1

6

� �
þ 1

6
1� 2

6

� �
¼ 4

9

Thus, we have EðR�A Þ� EðR�B Þ.
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5. Knowledge uncertainty measure in ordered information
systems

In this section, another uncertainty measure will be introduced,
which can provide another important approach to measuring the
discernibility ability of a knowledge in ordered information systems.

Definition 5.1. Let I � ¼ ðU;A; FÞ be an ordered information sys-
tem, R� be a dominance relation, and U=R� ¼ f½u��R ju2Ug be the
classification. Uncertainty measure of knowledge R� , which is
denoted by GðR� Þ, is defined by

GðR� Þ ¼ �
XjUj
i¼1

1

jUj log 2
j½xi��R j
jUj

Theorem 5.1. Let I � ¼ ðU;A; FÞ be an ordered information system,
and U=R� ¼ f½u��R ju2Ug;U=S� ¼ f½u��S ju2Ug be classifications of

two dominance relations R� and S� respectively. We can have the

following conclusions.

(1) (Equivalence) If jU=R� j ¼ jU=S� j, and it exists a bijective map
h : U=R� !U=S� such that j½u��R j ¼ jhð½u�

�
R Þj, then

GðR� Þ ¼ GðS� Þ.
(2) (Monotonicity) If R� ^ S� , then GðR� Þ�GðS� Þ.
(3) (Boundedness) Uncertainty measure of knowledge R� exists

the boundedness, i.e.,

0 � GðR� Þ � log 2jUj;

where GðR� Þ ¼ log 2jUj if and only if R� ¼ I� , and EðR� Þ ¼ 0 if

and only if R� ¼ d� .
(4) (Knowledge resolved) If R� can be resolved into a new

knowledge R
0 � , then GðR0 � Þ�GðR� Þ.

(5) (Knowledge composed) If a new knowledge R
00 � can be

composed of R� , then GðR� Þ�GðR00 � Þ.

Proof. The proof of them are similar to Theorems 3.1–3.7. &

Example 5.1. (Continued from Example 2.1) By computing, we
have that

GðR�A Þ ¼ �
1

6
�log 2

4

6
�1

6
�log 2

3

6
�1

6
�log 2

5

6
�1

6
�log 2

2

6
�1

6
�log 2

1

6

�1

6
�log 2

1

6
¼ 1:43381

GðR�B Þ ¼ �
1

6
�log 2

4

6
�1

6
�log 2

3

6
�1

6
�log 2

6

6
�1

6
�log 2

4

6
�1

6
�log 2

1

6

�1

6
�log 2

2

6
¼ 1:05664

Thus, we have GðR�A Þ�GðR�B Þ.

6. Relationship between knowledge granulation, knowledge
entropy and uncertainty measure

In this section, we will discuss relationship between knowledge
granulation, knowledge entropy and uncertainty measure.

Theorem 6.1. Let I � ¼ ðU;A; FÞ be an ordered information system,
R� be a dominance relation, and U=R� ¼ f½u��R ju2Ug be the classi-

fication. Relationship between knowledge granulation GKðR� Þ and

information entropy EðR� Þ of knowledge R� is

GKðR� Þ þ EðR� Þ ¼ 1:

Proof. Because of U=R� ¼ f½u��R ju2Ug is classification of domi-
nance R� , we can have

EðR� Þ ¼
XjUj
i¼1

1

jUj 1� j½xi��R j
jUj

 !
¼
XjUj
i¼1

1

jUj �
XjUj2
i¼1

j½xi��R j
jUj ¼ 1� GKðR� Þ

i.e.,

GKðR� Þ þ EðR� Þ ¼ 1:

The proof was completed. &

Example 6.1. (Continued form Example 3.1 and 4.3) In Examples
3.1 and 4.3, we have acquired that

GKðR�A Þ ¼
4

9
; GKðR�B Þ ¼

5

9
;

EðR�A Þ ¼
5

9
; EðR�B Þ ¼

4

9
:

So, the following is obvious.

GKðR�A Þ þ EðR�A Þ ¼ 1;

GKðR�B Þ þ EðR�B Þ ¼ 1:

Theorem 6.2. Let I � = ðU;A; FÞ be an ordered information system, R�

be a dominance relation, and U=R� ¼ f½u��R ju2Ug be the classifica-

tion. Relationship between uncertainty measure GðR� Þ and rough

entropy ErðR� Þ of knowledge R� is

GðR� Þ þ ErðR� Þ ¼ log 2jUj:

Proof. Because of U=R� ¼ f½u��R ju2Ug is classification of domi-
nance R� , we can have

GðR� Þ ¼ �
XjUj
i¼1

1

jUj log 2
j½xi��R j
jUj ¼ �

XjUj
i¼1

1

jUj ðlog 2j½xi��R j � log 2jUjÞ

¼ � �
XjUj
i¼1

1

jUj log 2
1

j½xi��R j

 !
þ log 2jUj

XjUj
i¼1

1

jUj

¼ �ErðR� Þ þ log 2jUj

i.e.,

GðR� Þ þ ErðR� Þ ¼ log 2jUj

The proof was completed. &

Example 6.2. (Continued form Example 4.2 and 5.1) In Examples
4.2 and 5.1, we have acquired that

ErðR�A Þ ¼ 1:15115; ErðR�B Þ ¼ 1:52832;

GðR�A Þ ¼ 1:43381; GðR�B Þ ¼ 1:05664:

So, the following is obvious.

GðR�A Þ þ ErðR�A Þ ¼ log 2jUj;
GðR�B Þ þ ErðR�B Þ ¼ log 2jUj:

7. Application

7.1. Limitation of classical measures in ordered information systems

In this section, through two illustrative examples, we reveal the
limitations of existing classical measures for evaluating uncer-
tainty of a set and approximation accuracy of a rough classification
in ordered information systems.

In refs. [4–9], authors proposed two numerical measures for
evaluating uncertainty of a set: accuracy and roughness. The
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accuracy measure is equal to the degree of completeness of a
knowledge about the given object set X, and is defined by the ratio
of the cardinalities of the lower and upper approximation sets of X

as follows:

aRðXÞ ¼
jR < ðXÞj
jR < ðXÞj

:

The roughness measure represents the degree of incompleteness of
a knowledge about the set, and is calculated by subtracting the
accuracy from one:

rRðXÞ ¼ 1� jR
< ðXÞj

jR < ðXÞj
:

These measures take into account the number of elements in each
of the approximation sets and are good metrics for evaluating
uncertainty that arises from the boundary region. However, the
accuracy and roughness do not provide the information that is
caused by the uncertainty related to the granularity of the
indiscernibility relation. Their limitations are revealed by the
following example.

Example 7.1. (Continued form Example 2.1) In Example 2.1, we
have known U=R <

A �U=R <

B , i.e., classification U=R <

A is finer than
classification U=R <

B in the system.

For X0 ¼ fx3; x5; x6g, we have

R <

A ðX
0Þ ¼ R <

B ðX
0Þ ¼ fx5; x6g;

R <

A ðX
0Þ ¼ R <

B ðX
0Þ ¼ U:

Thus, by calculating, the rough degrees of X0 about knowledge R <

B

and R <

A can be obtained respectively, which are

rAðXÞ ¼ rBðXÞ ¼
2

3
:

In other words, the uncertainty of knowledge R <

B is larger than
that of R <

A in Example 2.1, but X0 has the same rough degree.
Therefore, it is necessary to find a new and more accurate
uncertainty measure for rough sets in ordered information
systems.

7.2. Rough entropy of rough sets in ordered information systems

In the next, concept of rough entropy will be proposed, and it
will be shown that it is a new and more accurate uncertainty
measure for rough sets in ordered information systems.

Definition 7.1. Let I < ¼ ðU;A; FÞ be an ordered information sys-
tem and B�A. The rough entropy of a rough set X�U about
knowledge R <

B is defined as follows:

ER�
B
ðXÞ ¼ rBðXÞ � GKðR <

B Þ:

Furthermore, the following property can be obtained about the
entropy of rough sets.

Theorem 7.1. Let I � = ðU;A; FÞ be an ordered information system,
and U=R� ¼ f½u��R ju2Ug;U=S� ¼ f½u��S ju2Ug be classifications of

two dominance relations R� and S� respectively. For any X�U, we

can have the following conclusions.

(1) (Equivalence) If jU=R� j ¼ jU=S� j, and it exists a bijective map
h : U=R� !U=S� such that j½u��R j ¼ jhð½u�

�
R Þj, then

ER� ðXÞ ¼ ER� ðXÞ.
(2) (Monotonicity) If R� ^ S� , then ER� ðXÞ � ES� ðXÞ.

(3) (Boundedness) Rough entropy of rough set X about knowledge
R� exists the boundedness, i.e.,

0 � EðR� Þ � 1;

where EðR� Þ ¼ 0 if and only if R� ¼ I� , and EðR� Þ ¼ 1 if and

only if R� ¼ d� .
(4) (Knowledge resolved) If R� can be resolved into a new

knowledge R
0 � , then ER0 � ðXÞ � ER� ðXÞ.

(5) (Knowledge composed) If a new knowledge R
00 � can be

composed of R� , then ER� ðXÞ � ER00 � ðXÞ.

Proof. The proof of them can be acquired directly by
Theorems 3.1–3.7 and Definition 7.1 &

From the above, the rough entropy of rough sets is related not
only to its own rough degree, but also to the uncertainty of
knowledge in the ordered information systems.

Example 7.2. (Continued from Example 7.1) The rough entropy of
X0 in Example 7.1 is calculated about knowledge R <

B and R <

A

respectively, which are

ER�
B
ðX0Þ ¼ rðX0Þ � GKðR <

B Þ ¼
2

3
�5

9
¼ 10

27
;

ER�
A
ðX0Þ ¼ rðX0Þ � GKðR <

A Þ ¼
2

3
�4

9
¼ 8

27

Thus, we have

ER�
A
ðX0Þ< ER�

B
ðX0Þ:

By this example, it is obvious that the rough entropy of rough sets
is more accurate than the rough degree to measure the roughness
of rough sets in ordered information systems.

8. Conclusions

Rough set theory is a new mathematical tool to deal with
vagueness and uncertainty. Development of a rough computa-
tional method is one of the most important research tasks. While,
in practise, ordered information system confines the applications
of classical rough set theory. In this article, we introduced concepts
of knowledge granulation, knowledge entropy and knowledge
uncertainty measure in ordered information systems, and discuss
some important properties of them. From these properties, it can
be shown that these measures which are proposed provides
important approaches to measuring the discernibility ability of
different knowledge in ordered information systems. As an
application of knowledge granulation, we proposed definition of
rough entropy of rough sets in ordered information systems. By an
example, it is shown that the rough entropy of rough sets is more
accurate than classical rough degree to measure the roughness of
rough sets in ordered information systems. These new measures
may be helpful for rule evaluation and knowledge discovery in
ordered information systems.
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